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The goal of this paper is to derive the cross section for the inclusive
Deep-Inelastic Scattering (DIS) interaction, approximated as a one photon
exchange. DIS refers to the interaction in which a lepton scatters off of a
nucleon and only the outgoing lepton is measured. In this work, we consider
an unpolarized nucleon and lepton.

Looking at Figure 1, the squared amplitude of the reaction
e(k)+ N (P) = e(K)+ X (Px)

must be found. There is also a convenient factorization possible, as the top
half can be considered an electron-quark scattering event, while the bottom
half is a quark-quark correlator of the nucleon (see Figure 2).

Using the Feynman Rules for the amplitude |M|?,

M= () ) (k) (292 ) (0050) G (PLEO) ) ).

where p' = p+ ¢ and k' = k — ¢. The spinors v and % are for the incoming
and outgoing fermion lines respectively, and the quark field in the nucleon is
represented by .

Carrying out the metric tensor contraction and multiplying by the com-
plex conjugate,
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Figure 1: This is the Feynman diagram for the Deep Inelastic Scattering
interaction. Each line on the left is labeled by momentum and spin.



Figure 2: This is the factored Feynman diagram for the DIS interaction.

Collecting terms, using commutative property of complex numbers,

AP = 5 [ (0 )3 b s0)] [ (K, 50) 92 6 50)]

x [@ (p', 54) 7 (P19(0)[X)] [@ (9, 54) 7 (Pl9(0) | X)]"
Using Casimir’s Trick to average over all the spins and recognizing

(P1(0) |X)" = (X]|4(0) |P),
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(IMP) = ST B0 ] T [ () v (PHO(O) IX) (XT9(0) 1P)]
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where (IM|?) = 1 Z M|
spins
The expression for the cross-section in terms of (|M|?) is

4 — d°Py d°K’ d’p’ 1 (M)
Z;(zw)?’ 2P (21)% 2k (2m)* 2p° P - k
x (2m) 6W () + Px + K —P—k). (2)




Substituting (1)into (2)and bringing the k’ differential to the other side,

K°do 1 11 d°P Pp et ,
= ey Yoty LB AT [ )
I’k 4P -k8r°2 (2m)° 2Px (2m)° 2p™ 4q

<Tr [7, (#) 7 (P 6(0) 1X) (X](0) |P)] (27)* 6 () + P + K — P — k).

Recognizing ¢ = k — k', and shifting 1 (0) to v (£),

K°do 1 11 4*P Pp et ,
n = ey Yoty LB AT [ )
d°k’ 4P k8”2 (2m)° 2Py (2m)° 2p" 4q

< Tr [ () 3 (P(0) 1X) (X e S (6 €| )
X (277)4 5 (p' + Py —P— q) .
Applying the momentum operators,
K°do 1 11 PPy Pp et
_ - a T i Ml v
d3k/ AP .k 87T3 D) 2((27‘_)3 2P_§J{ (271')3 2p/0 4q4 r [ry ( )ry (%)]
X T |7, () 7 (P(0)1X) (X[ (€) 7€)
x (2m)* 6™ (W + Px — P —q),

recognizing the completeness relation in X, and pulling the exponentials out
of the trace (as they are complex numbers) gives

s [ e [ (0] T [y, ) (P16 00 1P)]
P’k 4P k8132 (27T)3 200 4q* 7 7 Tu T
Using the definition

(20)" 6" () = / &g ? (3)

o= a0,

and the relation




and pulling % into the integration to the match order of the differential,

T " P 1/ ((;w];d‘*fejqi Tr [ ()7 () Tr [, ()  (PLY (0) 9 (€) |P)]

% e iPx "€ iP € i(p +Px—P=q) &5 (p/Q) .

Pk AP k4722

Simplifying the exponential and substituting p’ = p + ¢ in the delta
function, exponential, and differential (dp’ = dp),

LA €T [y (K7 (B)] T [y, () v (Pl4 (0) ¥ (€) |P)]

x e &5 ((p+ q)2) )

K°do 1 1 1e2¢t / d*p
Pk 4P -k4x®2 4¢* ) (27)

Expanding (p+¢)° = —Q* + 2p-q, where ¢° = —Q? and using the
plus/minus basis gives —Q*+2p-q = —Q* + 2pTq~. Since p" = zPT,
where x denotes the fraction of the momentum the quark carries from the
nucleon, —Q? +2pT ¢~ = —Q* +2zPY¢". So (p+¢)* = —Q* + 22P "¢ .

The differential can also be expanded and rewritten in terms of z, d*p =
dptdp~ d®pyp = dzPTdp~ d®py:

K do 1 1 1ee" [fdePtdp dPpr 4
= 57 d€Tr [ (H')
&Pk AP k47’2 4q / (2] ETx [7" (K" (k)]

< Tr [y, () v (P ¥ (0)9 (€) |[P)] €® %6 (—Q* + 22P ¢ ") .
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Since the Bjorken variable z5 = 2PQT’ the delta function can be written

as ﬁé (z — 2). Making this substitution and canceling P* terms,

K°do 1 1 16264 d:z:dp_dzp N
/ Ty [y (K )y ()]

Pk AP k4x’2 4g" (2m)"
% Tx [, () 7 (P (0) 0 (€) [P)] eZ‘p'%é (z—z5).

Integrating the = dependence then expanding ¢ in the plus/minus base,

/0 2 4 — 12
= T [T e T [ () ()]

- (2m)"
1

PPk AP k47’2 4q
x Tr [, () v (Pl (0) ¢ (£7,6, &) | P)] G et —pr -éT)Qq__



After the integration over x, the delta function forces all x — z5. For

simplicity, the subscript B will be dropped and x denotes x g through the rest
of the derivation. Using (3), %eip*g 6 (£7) and d p)E e T — § (—£q),

K do 1 1 1eé
= 4 fdetde e T [ (K
T TP o AT T [ ) (1)

<Tr [y, () 7 (P19 (0) 0 (67,7, &0) |P)] € €D (67) 5 (— 5T>

1
g (2m)

Integrating over all the delta functions and expanding the second trace
in terms of indices,

EOdo 1 1 1@2 oA ¢ .
Pk AP k4r’2 4q' / o V()" ()]

U + .- 1
The correlator @ (z) is defined as

d§ (

5 [ PG ) () 1),

Py () =
so substituting this in,

k’oda_ 1 1 62 et 1
Pk 4P -k4r® 4¢" 2

Te [P ()] [y () o, B ()]
Reintroducing the trace,
K do 1 1 e2e* 1

F Ay Zq4 o I V)Y ()] T [, () 1@ (2)] -

Expanding ® (z) (a 4 by 4 matrix) in the a basis of gamma matrices (all
4 by 4 matrices),

1 . . i
— (Tr[@y ]y~ = Te[®y 31y 7y + Te[@io" 7 io" ™) .

@(x)%4

Only the first term of the trace is considered, as the cross-section is for the
unpolarized case, making the second term 0, and the third term is 0 when
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inserted into the trace of the cross-section. The trace of the first term gives
twice the PDF for a given quark flavor (as the nucleon spins were already
averaged over earlier). So,

K°do 1 1 et 1
Pk AP -k4ax? 44" 27

T [0 (9] § (26 @) T [ () 7]

Multiplying by a factor of p* /p* inside the second trace,

K°do 1 1 e2et 1
—_ - ~a T 'yard v
Pk AP k4r? 4t 2 ") ()

(2f1 (=) T [y, () v P /p"]

AN

Pulling the 1/p™ out of the trace (one component of 4-momentum)and
using the relation v pt = 2

K do 1 1 e f (o)
— a T W1 AV T 4 ]
d3k/ 4P - k47{'2 16q4 q—p+ T |:f>/ (li/ )fy (k)] r |:7N (ﬁ) IYVp}
Evaluating the traces, the four momentum can be pulled out of the trace,
leaving products of four gamma matrices. So,
K°do 11 e2e fy (z)

Pk’ 4P k4r*16¢* p-q

Using the properties of the trace of gamma matrices,

[(k’)€ ks Tr [v“’yev“vé“ (@) P Tr 17077 ] -

K do 11 ee f(x)
_ a 4 k/ k ( pe v uv e§+ o eu)]
Pk AP k47’ 164" p-q [40) ks (979" =90+

x [4 (0" 07 (9u09ve — Gwoo + GuoGav)] -

Contracting indices with the metric tensors,

K°do 11 eef(x) 5 5 y
P AP Rae g pg WE)R =g (K R) R ()]

< @)20 = 90 (0 -0) 40 ()]
Distributing the 4-momenta,

]C/OdO' 6264 1\ X A, / / I / /
o= T W) ()= (6 8) () o) ()= () (- 8)

FLF5) (1) = (p9) (K)o () (K 9) = (K 0) (6 0) +0 ) ()




Since the dot product is commutative,

K°do 1 1 e2et

d3k/ = 4p.]€4ﬂ.2 q4 f;(‘f]> [2 (k’/~p/) (k~p)+2(k-p/) (k/-p)}.

The Mandelstam variables are

=K —p) =(k—p)’=2k-p =2k-p, (4)
t=(k—p) =K —p)°=—2kp=—2t"p, (5)
i=(K-k)'=k-K)=¢=-Q, (6)
S=(P+k?=2P k=2Pk" (7)

So expressing the cross section in terms of these,

K°do 1 e2el fy () [§2—|—1§2}
Pk 4Pk ar? p-q | 20° |

The remaining scalar products can be written in terms of x and y, which
are defined as:

2
x = @ ,
2P -q
_P-q
Y= %
S 1L _ __Pg :ﬂAd.:p.:_QZQ_2
O Ipk T APqP kg7 ARMAP (=TG4 =Ty, 9 -

Pk QF 4ar’

K°do _zy fi(x) e2 et [éQ—I—fZ]

2
3 __ €
Also using ay,, =

Ano
K'do  dayfy (z)eal, [§ + 1
K Q" 27 | (®)

To convert the Mandelstam variables into x and v,

) 2p . p 2
—op k= 2uP k= 2% _ &
S -k P -k 2P y




f=—2k p=—2(}) 2Pt =2 < (P (¥)7) = @)

2P"q" q
To get an expression for (k;/)f,

_Pyg_P-(k=K)_ P¥_ P (F)
Pk~ Pk Pk PRk
’SFherefore, ()" =k (1 —y). From (4), k :2}%,80 (k')_:m%(l—y)

07
;_ Q’S(1—y)
t= S(1—
2Pre 25 (1 -y)
Also,
Q2 P-q 2
S = —F (2P k) = 9
oS = St (2P H) = Q 9
Then,




So,

= —. 10

Putting the result of (10)into (8),

Ko  dxyf (z)eal, [1—y 1
d3k/ = Q4 a0

;2
and simplifying by distributing gives

Ko 4f, () €l o, { -y, _y}

= 11
d3k/ Q4 y 2 ( )

While this is an expression for the cross-section, it is more useful for the
LHS to be differential in = and y. First, expressions for Q?* and y must be
found. Consider the nucleon-lepton interaction from the center of mass frame
(see Figure 3). Then,
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So, using properties of 4-momenta and dot products,
Q?=—(k—k)"
k—k =(E,— Ey,—E,sin6,0, E, — E,s cos )
(k — k')2 = (B, — E,)? = (=B, sin0)* + (Ey — Ey cos6)?)
—E} + Ez/ — 2B E — (EZ/ sin®0 + Ef — 2B E, cost + EZ/ cos 9)
=2E.E,/ (cosf — 1)
5. Q% =2F,E,, (1 —cosf).

and
P
TPk
_ By (By — Ey) — (—E}) (B, — Ey cosb)
Ey (Ey) — (—Ey) (E)
B, —E,+ E,— E)/cosf
N 2F,
_ 2B, — E;/ (14 cos?)
N 2F,
E,
y:1—2—Ek,k(1+COSQ).
Expressing the differential in spherical coordinates,
Eydo E,do
&’k dE,E2sin0dode
B E,do
- dE, E2d (cosf) dg
Using the Jacobian to change variables from dEj;d (cos) to dQ*dy,
dQ’
aE, =2F), (1 — cosb)
dQ?
= —2E,.E,
d (cos9) Rk
dy - (14 cosf)
dEk:/ 2Ek
dy . Ek'

d (cosf) 2E;,
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So the matrix J can be defined as

dg? do?
g |dEs deso)| _ 2By, (1 —cos)  —2E,E,
- dy dy - —(1+cos 6) i Ek/
dEk/ d(cos 0) 2By 2B,

Taking the determinant of J to find the Jacobian yields,

— (14 cos?)

E.
|det (J)| = |2E), (1 — cos6) Q_Elj’k —2E,E, E, ‘ =2E,.
So (using (9), dQ* = ySdz),
E,do (2Ey) Eydo  2do

dE EXd (cosf)de  ELdQ*dyd¢  ySdadyde’
Substituting this into (11),

2do _4fi (@) eacen [z(1=y) oy
ySdzdydey Q! y 2

Isolating the differential and integrating over ¢ using the azimuthal sym-
metry of the interaction, and rearranging for simplification,

do 1 da fy () ei aim 2(1—vy) 92
dedy 55 (2r) Q' [ i }

After some algebra with the y terms,

2 2

do dxf, (x) e al,S
dxd = (ﬂ-) 4
y Q

2

1+(1—y)2].

Finally,
do (27m)af, (2) eqacnS >
= 1+(1— .
dxdy Q* [ +1-y) }
This formula agrees with the well-known result for the unpolarized inclu-
sive DIS cross-section.
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