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Abstract

Multiparticle states called Werner states are defined by their
invariance under the same unitary evolution operator acting on
each particle. Already demonstrating nonlocal quantum properties,
these states also have potential application in quantum
computation and cryptography. This project is an attempt to prove
a conjecture which hopes to ensure the set of Werner states
constructed from non-crossing polygon diagrams can uniquely
represent all Werner states.

1. Introduction

The discipline of quantum information science gained importance
in the 1990s as researchers realized quantum states could be used
for currently impossible computations. Many useful classes of
states have been found, each with their individual uses, but the
focus of this project is the class of Werner states. Werner states
are defined by their invariance under the same unitary operation on
every qubit position. This is important because many noise
descriptions are based on unitary operators, so Werner states are
useful in carrying information in noisy quantum channels [1], as it
s possible to recover information lost to noise with known
error-correcting operators.

2. Background

Quantum information is stored in qubits, the quantum analog to
classical bits. A n-qubit quantum state lies in a complex vector
space and is formed by taking linear combinations (or
superpositions) of n-bit strings. For example, a 3-qubit state
vector could be 7-(|000) —5/|010) + 8[101) + /10 |111)). We use
Dirac’s ket notation (|¢/)) to represent vectors (complex
conjugate-transposed vectors are represented by bras ((¢)).
Quantum states are conventionally normalized, which means
(1|¢0) must = 1. In a 1-qubit system, the basis vectors are

0) = [é} and |1) = [ﬂ combined to produce higher dimensional
qubit spaces using a tensor product (®), which denotes the
Kronecker product of the two matrices, done by multiplying each
entry in the first matrix by the second matrix, and forming a
matrix of those values. For example, a basis vector for the 2-qubit
space is |0) ® |1), which is normally written as [01).

3. Forming Werner States

A diagram method has been developed to represent Werner States
in n-qubits [1]. To construct these states, one begins with a
non-crossing polygon diagram with a total of n points along the
circle, not all of which must be connected to another. For example,
in 5 qubits, a possible state can be represented by this diagram:

For each polygon in the diagram, one forms a sum of the cyclic
permutations of the bit strings of the size of the polygon, with a
normalization factor (so magnitude is 1) and roots of unity
coefficients. Then, one turns this string into a density matrix. All
the density matrices for each size bit string are summed, then
normalizing the result. The final Werner state is formed by
tensoring the density matrices in the positions specified by the
points on the diagram.

Cir.4.5(001) = (/001) + s |010) + e’5 |100))

Cl2.3)(01) = Z5(|01) — [10))

C3 = 5(C1.4,5/(001)Cpy 4.5/(001)F + Cpy 4.5/(011) Cpy 4.5(011)1)
Co = Cp2,3)(01) C2.3(01)T

PD = (C3)[1,4,5] & (Cz)[z,zﬂ
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Werner Basis Conjecture [1]

The states pp (as D varies over all non-crossing polygon diagrams)
form a basis for the space of Werner states (in the larger space of
real linear combinations of Pauli tensors).

It has been shown that the size of this set matches the dimension
of the Werner space, and the subject of our work was to prove this
set is linearly independent.

4. Matrices and Independence

Most of our work was done with the assistance of the GAP system,
a free and open software package. All code examples are written
for this program. The standard test for independence, which
begins supposing >  cppp = 0, is only practical for 2 qubits, as
the higher dimensions become computationally infeasible.

In 2 qubits, these are the two possible Werner States:

000 0 0 0 O
0 ; 0 0 0 5 -1 0
4 2. 2
00 1 o|™lo 1 L o
0 0 0 7 0 0 0 0

This set is independent by observation.

5. Minor Tests

As constructed, the Werner diagram basis is not orthonormal, so
we next tried to use GAP to orthonormalize each set. We were
searching for a new non-zero value in some place in each successive
matrix; however, the n-gon’'s matrix always only included values in
places from all the preceding matrices’ values. The next method
we tried was centered on applying a summation function (basically
the trace extended to superdiagonals) to the set of Werner
Diagrams at each superdiagonal. Using the scalar nature of the
summation function we could pull out the coefficients and sum
each successive superdiagonal.

6. Hilbert-Schmidt Inner Product

After working with the summation function, we decided to create a
matrix of the Hilbert-Schmidt Inner Product between each pair of
diagrams, which would be square, and it can be shown that if the
matrix is invertible, we would prove independence (therefore
proving the Werner Basis Conjecture). In 3 and 4 qubits, the inner
products were mostly real fractions. However, in higher
dimensions, GAP began to give us results as combinations of roots
of unity, which made calculating the determinant and eigenvalues
difficult, even for GAP. For 6 and fewer qubits, GAP was capable of
returning values, which led us to a conjecture on the determinant
of these Hilbert-Schmidt Inner Product (HIP) matrices:

HIP Determinant Conjecture

2i

n—1
det(A,) = — Zc:g : (eT)‘? . such that ¢, = ¢,_y and ¢, # 0 and
=1

the sum # 0
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Example of code used to create HIP matrices:
HIP := function(integer)

n:=integer;

c:=Catalan(n) ;

A:=IdentityMat(c);

B:=WD(n);

for i in [1..c] do;

for j in [1..c] do;
t:=TraceMat(B[i]*B[j]);

A[i] [j]:=t; od; od; return A; end;

Example of output for HIP for 4 qubits (14 non-crossing polygon
diagrams):

1 4 1 7 1 8 1 11
a:i=—55- E(12)* — 57 E(12)" — 5 E(12)° + i E(12)
! 1 1 1 1 1 1 1 1 1 1 1 1 1]

i6 16 16 16 16 16 16 16 16 16 16 16 16 16

1 1 1 1 1 1 1 i1 1 1 1 1 1

16 4 16 16 16 16 16 4 16 8 16 16 8 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1

i6 16 4 16 16 16 16 16 4 8 8 16 16 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1

i6 16 16 4 16 16 16 16 16 8 16 8 16 8

1 1 1 1 i1 1 1 1 1 1 1 1 1

16 16 16 16 4 16 16 4 16 16 8 8 16 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1

i6 16 16 16 16 4 16 16 16 16 8 16 8 8

1 1 1 1 1 1 1 1 1 1 1 1 1 1

i6 16 16 16 16 16 4 16 4 16 16 8 8 16

Ll 11 1 1 1 1 4 1 1 1 1 1 0

16 4 16 16 4 16 16 4 8 8 8 8

1 1 1 1 1 1 1 1 ¢ 1 1 1 1 g

16 16 4 16 16 16 4 4 8 8 8 8

1 1 1 1 1 1 1 1 1 1 1 1 1 3

i6 8 8 8 16 16 16 8 8 4 12 12 12

11 1 1 1 1 1 1 1 L1 1 1 1 .

6 16 8 16 8 8 16 8 8 12 4 12 12

1 1 1 1 1 1 1 1 1 1 1 1 1

6 16 16 8 8 16 8 &8 8 12 12 4 12

1 1 1 1 1 1 1 1 1 1 1 1 1 3

i6 8 16 16 16 8 8 8 8 12 12 12 4

1 1 1 1 1 1 1 1
i6 i6 i6 8 16 8§ 16 U 0925 a4 4 a a 3

. . l
Determinant of above MatriX=<75e599006847672

7. Permutation Matrices

Another form of matrix can be constructed from non-crossing
polygon diagrams, a special kind of permutation matrix (denoted
by V). These are formed by creating a permutation matrix for
each polygon, and tensoring these together to form the matrix for
the diagram. As it is known the permutation matrices form a basis
over the space of the diagram states [2], our next idea was to use
the permutation matrices and their relation to the Werner
Diagrams to prove independence. By definition of a basis, any
Werner diagram can be written as a linear combination of
permutation matrices, and it can easily be shown the top Werner
Diagram can be written in the form

n—1
270 ke 7k
Pn-gon X Z(e " )" Vn-gon (1)
k=0

We began exploring the expansion of Werner Diagrams and the
powers of the top permutation matrices in the permutation basis,
hoping to be able to express the powers of the top permutation
matrix as a non-zero coefficient with the top matrix and some
combination of lower diagrams, which we could then use induction
on to prove the top permutation matrix was also a combination of
Werner Diagrams. These combinations could then be used in (1)
to show independence of the Werner diagrams.

Method based on Permutation Matrices

The set of Werner Diagrams is linearly independent if, when
pn-gon Is expanded in the permutation basis, the coefficient of
Vn-gon is nonzero.
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Example of code for expanding a matrix in a basis
BasisCoef:=function(list,matrix)

A:=1list; D:=[];

for i in [1..Length(A)] do;

Add(D,flatten(A[i])); od;

B:=matrix; C:=SolutionMat(D,flatten(B)); return C;
end;

Example of the expansion of powers of the V4—gon

I |
0000000000000 1)Vj,

1 -1 -1 0 -1 0 -1 111111 =21V

211111100 -1 -1 -1 -1 1|V}

N-gon coefficients

When expanding the powers of the top permutation matrices in
the permutation basis, an interesting pattern developed. |t began
similar to an alternating Pascal’s triangle, but by the fourth row
(n = 6) the values began to differ. By the sixth row (n = 8), the
sequence did not match any in the OEIS. Based on the symmetry
and properties of the roots of unity, it can be shown the sum
across any even row will always be real and across any odd row the
sum will always be imaginary, however, we were unable to show the
sum will not be zero.

Triangle of Coefficients of Vp_gon to powers from 1 to n—1

n—=~=2 1

n=3 1 -1

n=24 1 -2 1

n—=>5 1 -3 3 -1

n—==~o 1 -4 8 -4 1
n—==17 1 -5 17 -17 5 -1
n—3~8 1 -6 33 -56 33 -6

Based on our observations, we conjecture the expansion of the top
permutation matrix squared is

Vrgr—gon = (2 —n) - Vp-gon + others

which we then would use for induction on higher powers of Vp_gon
to show the coefficient is nonzero.

We also observed the coefficients of the identity matrix in these
expansions are the values from the triangle, but backwards across
the rows.

Inverse Matrices

While trying to discover where these coefficients come from, we
experimented with the expansion of the inverse of the top
permutation matrices. The inverse of the k power of the Vp_gon is
the n — k power, so we hoped understanding the power and its
inverse's relationship would help us understand where the
coefficients come from, as the power and the inverse have the
same top matrix coefficient, sometimes with the opposite sign,
when expanded in the permutation basis. Our observations led to
this proven conjecture on the form of the inverse.

Expansion of Vﬂ__lgon

Vicgon = 1d+ ) (=1)* > Viudots

k=0 Ipl=k

8. Results and Further Work

While we were unable to prove the Werner Basis Conjecture, we
were able to investigate several avenues for proof, and our latest
idea on the expansion of Werner Diagrams in the permutation
basis has the best chance of success. Our idea hinges on the
understanding of the triangle of coefficients, as if we can
understand where they come from and obtain a formula, we could
show the coefficient for the top permutation matrix will never be
zero, and our proof follows from there.



