odeling Background 00	Modeling Results 00000	Sextupole Calculations O	Future Work	
	odeling Background 00	odeling Background Modeling Results 00 0000	odeling Background Modeling Results Sextupole Calculations 00 00000 0	odeling Background Modeling Results Sextupole Calculations Future Work 00 00000 0

REDTOP Beam Modeling For Raised Transition Energy and Third Integer Resonance Extraction

Justin Cammarota

Lebanon Valley College Advisor: Dr. Corrado Gatto and Dr. Michael Syphers Affiliation: Fermilab and Northern Illinois University Sponsored by DOE SULI Program

August 9, 2017

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
0					

• Proposed to explore BSM

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
0					

- Proposed to explore BSM
- Main methods: η and η'

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
0					

- Proposed to explore BSM
- Main methods: η and η'
- First stage: $\eta \rightarrow 3 \pi, \gamma \ell^{\pm} \ell^{\mp}, \pi^0 \ell^{\pm} \ell^{\mp}$

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
0					

- Proposed to explore BSM
- Main methods: η and η'
- First stage: $\eta \to 3 \pi, \gamma \ell^{\pm} \ell^{\mp}, \pi^0 \ell^{\pm} \ell^{\mp}$
- Search for new physics (Alexahin)

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
0					

- Proposed to explore BSM
- Main methods: η and η'
- First stage: $\eta \to 3 \pi, \gamma \ell^{\pm} \ell^{\mp}, \pi^0 \ell^{\pm} \ell^{\mp}$
- Search for new physics (Alexahin)
- Dark photon theorized in second decay mode

REDTOP ○●	Modeling Background 00	Modeling Results 00000	Sextupole Calculations O	Future Work	
REDT	OP Proposal				

 \bullet 1.9 GeV beam onto beryllium, produce 10^{13} η per year

REDTOP ○●	Modeling Background 00	Modeling Results 00000	Sextupole Calculations 0	Future Work 00000

REDTOP Proposal

- \bullet 1.9 GeV beam onto beryllium, produce 10^{13} η per year
- Resonant slow extraction method, similar to Mu2e (Nagalsev 2012)

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work
00				

REDTOP Proposal

- \bullet 1.9 GeV beam onto beryllium, produce 10^{13} η per year
- Resonant slow extraction method, similar to Mu2e (Nagalsev 2012)
- Will make use of current Muon Campus:

Cammarota

REDTOP oo	Modeling Background ●0	Modeling Results 00000	Sextupole Calculations O	Future Work	

• Deceleration of 8 GeV beam crosses transition energy (γ_{tr})

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
	•0				

- Deceleration of 8 GeV beam crosses transition energy ($\gamma_{\rm tr}$)
- $\gamma_{\rm tr}$ inversely proportional to dispersion

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
	00				

- Deceleration of 8 GeV beam crosses transition energy ($\gamma_{\rm tr}$)
- $\bullet~\gamma_{\rm tr}$ inversely proportional to dispersion
- \bullet Altering 18 quadrupoles (6 groups of 3) raises $\gamma_{\rm tr}~$ (Johnstone 2016)

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	00000
	••	00000			00000

- Deceleration of 8 GeV beam crosses transition energy (γ_{tr})
- $\bullet~\gamma_{\rm tr}$ inversely proportional to dispersion
- Altering 18 quadrupoles (6 groups of 3) raises $\gamma_{\rm tr}$ (Johnstone 2016)
- Third integer resonance extraction requires stable phase space be triangular

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
00	00	00000			00000

- Deceleration of 8 GeV beam crosses transition energy (γ_{tr})
- $\bullet~\gamma_{\rm tr}$ inversely proportional to dispersion
- Altering 18 quadrupoles (6 groups of 3) raises $\gamma_{\rm tr}$ (Johnstone 2016)
- Third integer resonance extraction requires stable phase space be triangular
- Sextupoles introduced to limit phase space

REDTOP 00	Modeling Background ○●	Modeling Results 00000	Sextupole Calculations O	Future Work	
Model	ing Software				

• Main program: MAD-X, developed at CERN

REDTOP 00	Modeling Background ○●	Modeling Results 00000	Sextupole Calculations 0	Future Work	
Model	ing Software				

- Main program: MAD-X, developed at CERN
- Beam line input to matrix calculations

REDTOP 00	Modeling Background ○●	Modeling Results 00000	Sextupole Calculations O	Future Work	
Madal	ing Coffware				

- Modeling Software
 - Main program: MAD-X, developed at CERN
 - Beam line input to matrix calculations
 - Relevant modules: Twiss and PTC

REDTOP 00	Modeling Background 00	Modeling Results ●0000	Sextupole Calculations O	Future Work	
Quadr	upole Modeling	g			

• Main Twiss parameters: $\beta_x, \beta_y, D_x, \alpha_x, \alpha_y, \mu_x, \mu_y$

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	00000

Quadrupole Modeling

- Main Twiss parameters: $\beta_x, \beta_y, D_x, \alpha_x, \alpha_y, \mu_x, \mu_y$
- Beta functions and dispersion plotted

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

Quadrupole Modeling

- Main Twiss parameters: $\beta_x, \beta_y, D_x, \alpha_x, \alpha_y, \mu_x, \mu_y$
- Beta functions and dispersion plotted
- For $\gamma_{tr} = 7.64$, beta functions look like:

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		0000			

• After raising $\gamma_{\rm tr}$ to 10.0286, the beta functions look like:

• Dispersion drops to 0 more often

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		0000			

• After raising $\gamma_{\rm tr}$ to 10.0286, the beta functions look like:

- Dispersion drops to 0 more often
- Beta functions drastically changed

Cammarota

REDTOP 00	Modeling Background 00	Modeling Results 00●00	Sextupole Calculations O	Future Work	
Beam	Size				
• Be	eta functions desci	ribe size of bear	n		

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

Beam Size

- Beta functions describe size of beam
- Beam size is:

$$\sigma_x = \sqrt{\frac{\beta_x \epsilon_{95}}{6\beta\gamma}}$$

•
$$\beta\gamma=rac{p}{m_{
m p}}$$
, $\epsilon_{95}=1.5 imes10^{-5}~{
m m}$

(1)

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

Beam Size

- Beta functions describe size of beam
- Beam size is:

$$\sigma_{\rm x} = \sqrt{\frac{\beta_{\rm x}\epsilon_{\rm 95}}{6\beta\gamma}} \tag{1}$$

•
$$\beta\gamma=rac{p}{m_p}$$
, $\epsilon_{95}=1.5 imes10^{-5}~{
m m}$

• So, for $\beta_x = 90$ m and an 8 GeV beam, $\sigma_x = 4.89$ mm

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work
		00000		

• Third integer resonance extraction

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

- Third integer resonance extraction
- Sextupoles shape phase space

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

- Third integer resonance extraction
- Sextupoles shape phase space
- Particles cross septum, then magnet directs to target hall

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

- Third integer resonance extraction
- Sextupoles shape phase space
- Particles cross septum, then magnet directs to target hall
- \bullet Creates slow extraction process, continuous beam instead of bunches

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

- Third integer resonance extraction
- Sextupoles shape phase space
- Particles cross septum, then magnet directs to target hall
- Creates slow extraction process, continuous beam instead of bunches
- $Z = \alpha \times X + \beta \times X'$

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
		00000			

Triangular Phase Space

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work
			•	

 \bullet Strength based on phase advance ($\mu_{\mathsf{X}})$ and β_{X}

$$s^2 = s_s^2 + s_c^2$$
 (2)

$$s_s = \frac{1}{4\pi} \sum_i \frac{k}{6} \bar{\beta}^{3/2} \sin(2\theta\theta_i) \tag{3}$$

•
$$\theta_i = \frac{2\pi\mu_{x_i}}{\nu}$$
, where $\nu = 9.65$

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work
			•	

• Strength based on phase advance (μ_x) and β_x

$$s^2 = s_s^2 + s_c^2$$
 (2)

$$s_s = \frac{1}{4\pi} \sum_i \frac{k}{6} \bar{\beta}^{3/2} \sin(2\theta\theta_i)$$
(3)

•
$$\theta_i = \frac{2\pi\mu_{x_i}}{\nu}$$
, where $\nu = 9.65$

• s_c is the same as 3, but with sin ightarrow cos

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work
			•	

• Strength based on phase advance (μ_x) and β_x

$$s^2 = s_s^2 + s_c^2$$
 (2)

$$s_s = \frac{1}{4\pi} \sum_i \frac{k}{6} \bar{\beta}^{3/2} \sin(2\theta\theta_i) \tag{3}$$

•
$$\theta_i = \frac{2\pi\mu_{x_i}}{\nu}$$
, where $\nu = 9.65$

• s_c is the same as 3, but with sin ightarrow cos

$$s^2 = \frac{\sqrt{3}}{3A}\Delta_0^2$$
 (4)
• $A = \pi\epsilon_{99}, \epsilon_{99} = 2.3 \times 10^{-5} \text{ m}, \Delta_0 = (\frac{29}{3} - \nu)$

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
			•		

• Strength based on phase advance (μ_{x}) and β_{x}

$$s^2 = s_s^2 + s_c^2$$
 (2)

$$s_s = \frac{1}{4\pi} \sum_i \frac{k}{6} \bar{\beta}^{3/2} \sin(2\theta\theta_i)$$
(3)

•
$$\theta_i = \frac{2\pi\mu_{x_i}}{\nu}$$
, where $\nu = 9.65$

• s_c is the same as 3, but with sin $\rightarrow \cos$

$$s^{2} = \frac{\sqrt{3}}{3A}\Delta_{0}^{2}$$
(4)
$$A = \pi\epsilon_{99}, \epsilon_{99} = 2.3 \times 10^{-5} \text{ m}, \Delta_{0} = (\frac{29}{3} - \nu)$$

• From this, $k = 11.18224 \frac{1}{m^2}$

Cammarota

.

REDTOP 00	Modeling Background 00	Modeling Results 00000	Sextupole Calculations O	Future Work	•0000
Future	Work				

• Full process must be modeled

REDTOP 00	Modeling Background 00	Modeling Results 00000	Sextupole Calculations O	Future Work	•0000
Future	Work				

- Full process must be modeled
- Deceleration process with RF cavities

REDTOP 00	Modeling Background	Modeling Results 00000	Sextupole Calculations O	Future Work	•0000
Future	Work				

- Full process must be modeled
- Deceleration process with RF cavities
- Actual extraction process

REDTOP 00	Modeling Background 00	Modeling Results 00000	Sextupole Calculations O	Future Work	•0000
Future	e Work				

- Full process must be modeled
- Deceleration process with RF cavities
- Actual extraction process
- Dynamical processes

REDTOP 00	Modeling Background	Modeling Results 00000	Sextupole Calculations O	Future Work	0000
Conclus	sion				

 \bullet Study η decay for new physics

REDTOP 00	Modeling Background	Modeling Results 00000	Sextupole Calculations O	Future Work	00000
Conclu	sion				

- \bullet Study η decay for new physics
- Modify Muon Campus at Fermilab

REDTOP 00	Modeling Background 00	Modeling Results 00000	Sextupole Calculations 0	Future Work 0●000
Conclu	sion			

- \bullet Study η decay for new physics
- Modify Muon Campus at Fermilab
- Quadrupole modifications to raise transition energy modeled

REDTOP 00	Modeling Background 00	Modeling Results 00000	Sextupole Calculations O	Future Work ○●	000
Conclu	ision				

- \bullet Study η decay for new physics
- Modify Muon Campus at Fermilab
- Quadrupole modifications to raise transition energy modeled
- Sextupole modifications to shape phase space modeled

REDTOP 00	Modeling Background 00	Modeling Results 00000	Sextupole Calculations 0	Future Work	0000
Conclu	ision				

- \bullet Study η decay for new physics
- Modify Muon Campus at Fermilab
- Quadrupole modifications to raise transition energy modeled
- Sextupole modifications to shape phase space modeled
- Future modeling to confirm entire experimental setup

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
					00000

Thank you for your attention.

Modeling Background Future Work 00000 **Acknowledgments.** This work would not have been possible without the support and expertise from John Johnstone at Fermi National Accelerator Laboratory, Andrew Fiedler at Northern Illinois University, and the rest of Fermilab's accelerator community. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) Program.

REDTOP	Modeling Background	Modeling Results	Sextupole Calculations	Future Work	
					00000

References

[1] Y. Alexahin et al.

Rare Eta Decay with a TPC for Optical Photons Expression of Interest, 2016.

[2] J. A. Johnstone et al.

Delivery Ring Lattice Modifications for Transitionless Deceleration, 2016.

[3] V. Nagalsev et al.

Third Integer Resonance Slow Extraction Scheme for a Mu \rightarrow e Experiment at Fermilab, 2012.