Investigation of the Werner Basis Conjecture

Justin Cammarota

Lebanon Valley College Advisor: Dr. David Lyons Sponsored by LVC Arnold faculty-student research grant

February 25, 2016

• Importance in the 1990s

- Importance in the 1990s
- Used for currently impossible computations

- Importance in the 1990s
- Used for currently impossible computations
- Focus on the class of Werner states

- Importance in the 1990s
- Used for currently impossible computations
- Focus on the class of Werner states
- Defined by their invariance under the same unitary operation on every qubit position

- Importance in the 1990s
- Used for currently impossible computations
- Focus on the class of Werner states
- Defined by their invariance under the same unitary operation on every qubit position
- Some noise descriptions are based on unitary operators

- Importance in the 1990s
- Used for currently impossible computations
- Focus on the class of Werner states
- Defined by their invariance under the same unitary operation on every qubit position
- Some noise descriptions are based on unitary operators
- Useful in carrying information in noisy quantum channels (Lyons 2012)

• Information stored in quantum bits (qubits), and *n*-qubit quantum state lies in a complex vector space

• formed by taking linear combinations (or superpositions) of *n*-bit strings

- formed by taking linear combinations (or superpositions) of n-bit strings
- 3-qubit state vector: $\frac{1}{10}(|000\rangle 5i|010\rangle + 8|101\rangle + \sqrt{10}|111\rangle)$

- formed by taking linear combinations (or superpositions) of *n*-bit strings
- 3-qubit state vector: $\frac{1}{10}(\ket{000} 5i\ket{010} + 8\ket{101} + \sqrt{10}\ket{111})$
- Dirac's ket notation ($|\psi
 angle$)

- formed by taking linear combinations (or superpositions) of n-bit strings
- 3-qubit state vector: $\frac{1}{10}(\ket{000} 5i\ket{010} + 8\ket{101} + \sqrt{10}\ket{111})$
- Dirac's ket notation $(|\psi\rangle)$
- Complex conjugate-transposed vectors represented by bras $(\langle \psi | = (|\psi \rangle)^{\dagger})$

- formed by taking linear combinations (or superpositions) of n-bit strings
- 3-qubit state vector: $\frac{1}{10}(\ket{000} 5i\ket{010} + 8\ket{101} + \sqrt{10}\ket{111})$
- Dirac's ket notation $(|\psi\rangle)$
- Complex conjugate-transposed vectors represented by bras $(\langle \psi | = (|\psi \rangle)^{\dagger})$
- ullet Conventionally normalized, which means $\langle\psi|\psi\rangle$ must $\,=\,1$

- formed by taking linear combinations (or superpositions) of n-bit strings
- 3-qubit state vector: $\frac{1}{10}(\ket{000} 5i\ket{010} + 8\ket{101} + \sqrt{10}\ket{111})$
- Dirac's ket notation ($|\psi
 angle$)
- Complex conjugate-transposed vectors represented by bras ($\langle \psi | = (|\psi \rangle)^{\dagger}$)
- ullet Conventionally normalized, which means $\langle\psi|\psi\rangle$ must $\,=\,1$
- 1-qubit system: the basis vectors are $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- formed by taking linear combinations (or superpositions) of n-bit strings
- 3-qubit state vector: $\frac{1}{10}(\ket{000} 5i\ket{010} + 8\ket{101} + \sqrt{10}\ket{111})$
- Dirac's ket notation ($|\psi
 angle$)
- Complex conjugate-transposed vectors represented by bras $(\langle \psi | = (|\psi \rangle)^{\dagger})$
- ullet Conventionally normalized, which means $\langle\psi|\psi\rangle$ must $\,=\,1$
- 1-qubit system: the basis vectors are $|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$
- \bullet Combined to produce higher dimensional qubit spaces using a tensor product (\otimes)

- formed by taking linear combinations (or superpositions) of *n*-bit strings
- 3-qubit state vector: $\frac{1}{10}(\ket{000} 5i\ket{010} + 8\ket{101} + \sqrt{10}\ket{111})$
- Dirac's ket notation ($|\psi
 angle$)
- Complex conjugate-transposed vectors represented by bras $(\langle \psi | = (|\psi \rangle)^{\dagger})$
- ullet Conventionally normalized, which means $\langle\psi|\psi\rangle$ must $\,=\,1$
- 1-qubit system: the basis vectors are $|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$
- Combined to produce higher dimensional qubit spaces using a tensor product (\otimes)
- Denotes the Kronecker product of the two matrices: done by multiplying each entry in the first matrix by the second matrix, and forming a matrix of those values

Kronecker Product

• To form a tensor: consider a basis vector for the 2-qubit space: $|0
angle\otimes|1
angle$

Kronecker Product

• To form a tensor: consider a basis vector for the 2-qubit space: $|0\rangle\otimes|1
angle$

• So, as above:
$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$
 and $|1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$, so
 $|0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \cdot \begin{bmatrix} 0\\1 \\ 0 \cdot \begin{bmatrix} 0\\1 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \\ 0 \end{bmatrix}$

Forming Werner States

• Diagram method to represent Werner States in *n*-qubits (Lyons 2012)

Forming Werner States

- Diagram method to represent Werner States in *n*-qubits (Lyons 2012)
- Begin with a non-crossing polygon diagram with a total of *n* points along the circle

Forming Werner States

- Diagram method to represent Werner States in *n*-qubits (Lyons 2012)
- Begin with a non-crossing polygon diagram with a total of *n* points along the circle
- In 5-qubit possible state:

• Turn this string into a density matrix

- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result

- For each polygon in the diagram, form a sum of the cyclic permutations of the bit strings of the size of the polygon, with a normalization factor and roots of unity coefficients
- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result
- Final Werner state formed by tensoring the density matrices in the positions specified by the points on the diagram

- For each polygon in the diagram, form a sum of the cyclic permutations of the bit strings of the size of the polygon, with a normalization factor and roots of unity coefficients
- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result
- Final Werner state formed by tensoring the density matrices in the positions specified by the points on the diagram

$$C_{[1,4,5]}(001) = rac{1}{\sqrt{3}}(|001
angle + e^{rac{2\pi i}{3}}|010
angle + e^{rac{4\pi i}{3}}|100
angle)$$

- For each polygon in the diagram, form a sum of the cyclic permutations of the bit strings of the size of the polygon, with a normalization factor and roots of unity coefficients
- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result
- Final Werner state formed by tensoring the density matrices in the positions specified by the points on the diagram

$$egin{aligned} & \mathcal{C}_{[1,4,5]}(001) = rac{1}{\sqrt{3}}(|001
angle + e^{rac{2\pi i}{3}} |010
angle + e^{rac{4\pi i}{3}} |100
angle) \ & \mathcal{C}_{[2,3]}(01) = rac{1}{\sqrt{2}}(|01
angle - |10
angle) \end{aligned}$$

- For each polygon in the diagram, form a sum of the cyclic permutations of the bit strings of the size of the polygon, with a normalization factor and roots of unity coefficients
- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result
- Final Werner state formed by tensoring the density matrices in the positions specified by the points on the diagram

$$\begin{split} &C_{[1,4,5]}(001) = \frac{1}{\sqrt{3}} (|001\rangle + e^{\frac{2\pi i}{3}} |010\rangle + e^{\frac{4\pi i}{3}} |100\rangle) \\ &C_{[2,3]}(01) = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \\ &C_{3} = \frac{1}{2} (C_{[1,4,5]}(001) C_{[1,4,5]}(001)^{\dagger} + C_{[1,4,5]}(011) C_{[1,4,5]}(011)^{\dagger}) \end{split}$$

- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result
- Final Werner state formed by tensoring the density matrices in the positions specified by the points on the diagram

$$\begin{split} C_{[1,4,5]}(001) &= \frac{1}{\sqrt{3}} (|001\rangle + e^{\frac{2\pi i}{3}} |010\rangle + e^{\frac{4\pi i}{3}} |100\rangle) \\ C_{[2,3]}(01) &= \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \\ C_3 &= \frac{1}{2} (C_{[1,4,5]}(001) C_{[1,4,5]}(001)^{\dagger} + C_{[1,4,5]}(011) C_{[1,4,5]}(011)^{\dagger}) \\ C_2 &= C_{[2,3]}(01) C_{[2,3]}(01)^{\dagger} \end{split}$$

o :

- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result
- Final Werner state formed by tensoring the density matrices in the positions specified by the points on the diagram

$$\begin{split} &C_{[1,4,5]}(001) = \frac{1}{\sqrt{3}}(|001\rangle + e^{\frac{2\pi i}{3}} |010\rangle + e^{\frac{4\pi i}{3}} |100\rangle) \\ &C_{[2,3]}(01) = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \\ &C_{3} = \frac{1}{2}(C_{[1,4,5]}(001)C_{[1,4,5]}(001)^{\dagger} + C_{[1,4,5]}(011)C_{[1,4,5]}(011)^{\dagger}) \\ &C_{2} = C_{[2,3]}(01)C_{[2,3]}(01)^{\dagger} \\ &\rho_{\mathcal{D}} = (C_{3})_{[1,4,5]} \otimes (C_{2})_{[2,3]} \end{split}$$

- Turn this string into a density matrix
- Density matrices for each size bit string are summed, then normalize the result
- Final Werner state formed by tensoring the density matrices in the positions specified by the points on the diagram

$$\begin{split} C_{[1,4,5]}(001) &= \frac{1}{\sqrt{3}} (|001\rangle + e^{\frac{2\pi i}{3}} |010\rangle + e^{\frac{4\pi i}{3}} |100\rangle) \\ C_{[2,3]}(01) &= \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \\ C_3 &= \frac{1}{2} (C_{[1,4,5]}(001)C_{[1,4,5]}(001)^{\dagger} + C_{[1,4,5]}(011)C_{[1,4,5]}(011)^{\dagger}) \\ C_2 &= C_{[2,3]}(01)C_{[2,3]}(01)^{\dagger} \\ \rho_{\mathcal{D}} &= (C_3)_{[1,4,5]} \otimes (C_2)_{[2,3]} \end{split}$$

• Final matrix is 2ⁿ by 2ⁿ

Werner Basis Conjecture [1

The states $\rho_{\mathcal{D}}$ (as \mathcal{D} varies over all non-crossing polygon diagrams) form a basis for the space of Werner states (in the larger space of real linear combinations of Pauli tensors).

Werner Basis Conjecture [1

The states $\rho_{\mathcal{D}}$ (as \mathcal{D} varies over all non-crossing polygon diagrams) form a basis for the space of Werner states (in the larger space of real linear combinations of Pauli tensors).

• Size of this set matches the dimension of the Werner space

Werner Basis Conjecture [1

The states $\rho_{\mathcal{D}}$ (as \mathcal{D} varies over all non-crossing polygon diagrams) form a basis for the space of Werner states (in the larger space of real linear combinations of Pauli tensors).

- Size of this set matches the dimension of the Werner space
- Subject of our work was to prove this set is linearly independent

Matrices and Independence

• Assistance of the GAP system, a free and open software package

Matrices and Independence

- Assistance of the GAP system, a free and open software package
- Standard test for independence
Matrices and Independence

- Assistance of the GAP system, a free and open software package
- Standard test for independence
- Supposes $\sum_{\mathcal{D}} c_{\mathcal{D}} \rho_{\mathcal{D}} = 0$

Matrices and Independence

- Assistance of the GAP system, a free and open software package
- Standard test for independence
- Supposes $\sum_{\mathcal{D}} c_{\mathcal{D}} \rho_{\mathcal{D}} = 0$
- Only practical for 2 qubits, as the higher dimensions become computationally infeasible

Matrices and Independence

- Assistance of the GAP system, a free and open software package
- Standard test for independence
- Supposes $\sum_{\mathcal{D}} c_{\mathcal{D}} \rho_{\mathcal{D}} = 0$
- Only practical for 2 qubits, as the higher dimensions become computationally infeasible
- 2 qubits: two possible Werner States:

$$\begin{bmatrix} \frac{1}{4} & 0 & 0 & 0\\ 0 & \frac{1}{4} & 0 & 0\\ 0 & 0 & \frac{1}{4} & 0\\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & \frac{1}{2} & -\frac{1}{2} & 0\\ 0 & -\frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• Begin with set of matrices

- Begin with set of matrices
- Independent if no element can be written as a combination of others in set

- Begin with set of matrices
- \bullet Independent if no element can be written as a combination of others in set
- Independent Example (Pauli Matrices):

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \text{and} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- Begin with set of matrices
- Independent if no element can be written as a combination of others in set
- Independent Example (Pauli Matrices):

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \text{and} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• Dependent Example:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \text{and} \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$$

• Summation over diagonals: Condensed equation set, still complicated solution

- Summation over diagonals: Condensed equation set, still complicated solution
- Hilbert-Schmidt Inner Product: Took tr $A^{\dagger}B$ for all A, B in the set of Werner Diagrams for a given size and formed a matrix of the traces

- Summation over diagonals: Condensed equation set, still complicated solution
- Hilbert-Schmidt Inner Product: Took tr $A^{\dagger}B$ for all A, B in the set of Werner Diagrams for a given size and formed a matrix of the traces
- Graham-Schmidt Orhtonormalization: searched for a new non-zero value in some entry in each successive matrix

- Summation over diagonals: Condensed equation set, still complicated solution
- Hilbert-Schmidt Inner Product: Took tr $A^{\dagger}B$ for all A, B in the set of Werner Diagrams for a given size and formed a matrix of the traces
- Graham-Schmidt Orhtonormalization: searched for a new non-zero value in some entry in each successive matrix
- Difficulties: Worked for low *n*, however patterns were not clear and unable to generalize solutions to higher dimensions

Permutation Matrices

• Another form of matrix can be constructed from non-crossing polygon diagrams: a special kind of permutation matrix (denoted by V)

Permutation Matrices

• Another form of matrix can be constructed from non-crossing polygon diagrams: a special kind of permutation matrix (denoted by V)

• Formed by creating a permutation matrix for each polygon, and tensoring these together to form the matrix for the diagram

Permutation Matrices

• Another form of matrix can be constructed from non-crossing polygon diagrams: a special kind of permutation matrix (denoted by V)

- Formed by creating a permutation matrix for each polygon, and tensoring these together to form the matrix for the diagram
- Using the same example:

• Permutation matrices are variations of the identity matrix

- Permutation matrices are variations of the identity matrix
- From a diagram state, the permutations are read around each shape.

- Permutation matrices are variations of the identity matrix
- From a diagram state, the permutations are read around each shape.
- The first permutation is (1,4,5), so the qubit in position 1 goes to position 5, 5 goes to 4, and 4 goes to 1.

- Permutation matrices are variations of the identity matrix
- From a diagram state, the permutations are read around each shape.
- The first permutation is (1,4,5), so the qubit in position 1 goes to position 5, 5 goes to 4, and 4 goes to 1.
- Beginning with the state $|01010\rangle$, the first permutation does:

 $|01010\rangle \rightarrow |11000\rangle$

- Permutation matrices are variations of the identity matrix
- From a diagram state, the permutations are read around each shape.
- The first permutation is (1,4,5), so the qubit in position 1 goes to position 5, 5 goes to 4, and 4 goes to 1.
- Beginning with the state $|01010\rangle$, the first permutation does:

 $|01010\rangle \rightarrow |11000\rangle$

• The second permutation, (2,3), just switches the two, so

 $|11000\rangle \rightarrow |10100\rangle$

- Permutation matrices are variations of the identity matrix
- From a diagram state, the permutations are read around each shape.
- The first permutation is (1,4,5), so the qubit in position 1 goes to position 5, 5 goes to 4, and 4 goes to 1.
- Beginning with the state $|01010\rangle$, the first permutation does:

 $|01010\rangle \rightarrow |11000\rangle$

• The second permutation, (2,3), just switches the two, so

 $|11000\rangle \rightarrow |10100\rangle$

. \bullet The permutations can leave the states identical, for example:

|10011
angle
ightarrow |10011
angle

- Permutation matrices are variations of the identity matrix
- From a diagram state, the permutations are read around each shape.
- The first permutation is (1,4,5), so the qubit in position 1 goes to position 5, 5 goes to 4, and 4 goes to 1.
- Beginning with the state $|01010\rangle$, the first permutation does:

 $|01010\rangle \rightarrow |11000\rangle$

• The second permutation, (2,3), just switches the two, so

 $|11000\rangle \rightarrow |10100\rangle$

. • The permutations can leave the states identical, for example:

|10011
angle
ightarrow |10011
angle

• Process applied to all the basis vectors for the system

- Permutation matrices are variations of the identity matrix
- From a diagram state, the permutations are read around each shape.
- The first permutation is (1,4,5), so the qubit in position 1 goes to position 5, 5 goes to 4, and 4 goes to 1.
- Beginning with the state $|01010\rangle$, the first permutation does:

 $|01010\rangle \rightarrow |11000\rangle$

• The second permutation, (2,3), just switches the two, so

 $|11000\rangle \rightarrow |10100\rangle$

. \bullet The permutations can leave the states identical, for example:

 $|10011\rangle \rightarrow |10011\rangle$

- Process applied to all the basis vectors for the system
- Vectors are made into columns for the permutation matrix, in original order

• The permutation matrices form a basis over the space of the diagram states (Grassl 1998)

- The permutation matrices form a basis over the space of the diagram states (Grassl 1998)
- Use the permutation matrices and relation to the Werner Diagrams to prove independence

- The permutation matrices form a basis over the space of the diagram states (Grassl 1998)
- Use the permutation matrices and relation to the Werner Diagrams to prove independence
- Any Werner diagram written as a linear combination of permutation matrices

- The permutation matrices form a basis over the space of the diagram states (Grassl 1998)
- Use the permutation matrices and relation to the Werner Diagrams to prove independence
- Any Werner diagram written as a linear combination of permutation matrices
- Can easily be shown the top Werner Diagram can be written in the form

$$\rho_{n-\text{gon}} \propto \sum_{k=0}^{n-1} (e^{\frac{2\pi i}{n}})^k V_{n-\text{gon}}^k \tag{1}$$

• Exploring the expansion of Werner Diagrams and the powers of the top permutation matrices in the permutation basis

- Exploring the expansion of Werner Diagrams and the powers of the top permutation matrices in the permutation basis
- Hope: be able to express the powers of the top permutation matrix as a non-zero coefficient with the top matrix and some combination of lower diagrams

- Exploring the expansion of Werner Diagrams and the powers of the top permutation matrices in the permutation basis
- Hope: be able to express the powers of the top permutation matrix as a non-zero coefficient with the top matrix and some combination of lower diagrams
- Use induction to prove the top permutation matrix was also a combination of Werner Diagrams

- Exploring the expansion of Werner Diagrams and the powers of the top permutation matrices in the permutation basis
- Hope: be able to express the powers of the top permutation matrix as a non-zero coefficient with the top matrix and some combination of lower diagrams
- Use induction to prove the top permutation matrix was also a combination of Werner Diagrams
- \bullet These combinations could then be used in (1) to show independence of the Werner diagrams

- Exploring the expansion of Werner Diagrams and the powers of the top permutation matrices in the permutation basis
- Hope: be able to express the powers of the top permutation matrix as a non-zero coefficient with the top matrix and some combination of lower diagrams
- Use induction to prove the top permutation matrix was also a combination of Werner Diagrams
- \bullet These combinations could then be used in (1) to show independence of the Werner diagrams

Method based on Permutation Matrices

The set of Werner Diagrams is linearly independent if, when $\rho_{n-\text{gon}}$ is expanded in the permutation basis, the coefficient of $V_{n-\text{gon}}$ is nonzero.

```
• Example of code for expanding a matrix in a basis
BasisCoef:=function(list,matrix)
A:=list; D:=[];
for i in [1..Length(A)] do;
Add(D,flatten(A[i])); od;
B:=matrix; C:=SolutionMat(D,flatten(B)); return C; end;
```

```
Example of code for expanding a matrix in a basis
BasisCoef:=function(list,matrix)
A:=list; D:=[];
for i in [1..Length(A)] do;
Add(D,flatten(A[i])); od;
B:=matrix; C:=SolutionMat(D,flatten(B)); return C; end;
```

• Example of the expansion of powers of the $V_{4-\text{gon}}$

N-gon coefficients

• Powers of the top permutation matrices in the permutation basis: interesting pattern developed

N-gon coefficients

• Powers of the top permutation matrices in the permutation basis: interesting pattern developed

• Similar to an alternating Pascal's triangle

N-gon coefficients

• Powers of the top permutation matrices in the permutation basis: interesting pattern developed

- Similar to an alternating Pascal's triangle
- Fourth row (n = 6) the values began to differ
N-gon coefficients

• Powers of the top permutation matrices in the permutation basis: interesting pattern developed

- Similar to an alternating Pascal's triangle
- Fourth row (n = 6) the values began to differ
- Sixth row (n = 8), the sequence did not match any in the OEIS

N-gon coefficients

• Powers of the top permutation matrices in the permutation basis: interesting pattern developed

- Similar to an alternating Pascal's triangle
- Fourth row (n = 6) the values began to differ
- Sixth row (n = 8), the sequence did not match any in the OEIS
- Symmetry and properties of the roots of unity: can be shown the sum across any even row will always be real and across any odd row the sum will always be imaginary

N-gon coefficients

• Powers of the top permutation matrices in the permutation basis: interesting pattern developed

- Similar to an alternating Pascal's triangle
- Fourth row (n = 6) the values began to differ
- Sixth row (n = 8), the sequence did not match any in the OEIS
- Symmetry and properties of the roots of unity: can be shown the sum across any even row will always be real and across any odd row the sum will always be imaginary
- Unable to show the sum will not be zero

• Conjecture the expansion of the top permutation matrix squared is

$$V^2_{n- ext{gon}} = (2 - n) \cdot V_{n- ext{gon}} + ext{ others}$$

• Conjecture the expansion of the top permutation matrix squared is

$$V_{n-\text{gon}}^2 = (2-n) \cdot V_{n-\text{gon}} + \text{ others}$$

• Induction on higher powers of V_{n-gon} to show the coefficient is nonzero

• Conjecture the expansion of the top permutation matrix squared is

$$V_{n-\text{gon}}^2 = (2 - n) \cdot V_{n-\text{gon}} + \text{ others}$$

• Induction on higher powers of V_{n-gon} to show the coefficient is nonzero

• Observed the coefficients of the identity matrix in these expansions are the values from the triangle (backwards)

• Experimented with the expansion of the inverse of the top permutation matrices

• Experimented with the expansion of the inverse of the top permutation matrices

• Inverse of the k power of the V_{n-gon} is the n-k power

• Experimented with the expansion of the inverse of the top permutation matrices

- Inverse of the k power of the V_{n-gon} is the n-k power
- Hoped understanding the power and its inverse's relationship would help us understand where the coefficients come from

• Experimented with the expansion of the inverse of the top permutation matrices

- Inverse of the k power of the V_{n-gon} is the n-k power
- Hoped understanding the power and its inverse's relationship would help us understand where the coefficients come from
- Power and the inverse have the same top matrix coefficient, sometimes with the opposite sign

• Experimented with the expansion of the inverse of the top permutation matrices

- Inverse of the k power of the V_{n-gon} is the n-k power
- Hoped understanding the power and its inverse's relationship would help us understand where the coefficients come from
- Power and the inverse have the same top matrix coefficient, sometimes with the opposite sign
- Observations led to this proven conjecture on the form of the inverse:

Expansion of $V_{n-\text{gon}}^{-1}$

$$V_{n-\text{gon}}^{-1} = \text{Id} + \sum_{k=0}^{n} (-1)^k \sum_{|p|=k} V_{p \cup \text{dots}}$$

• Unable to prove the Werner Basis Conjecture

- Unable to prove the Werner Basis Conjecture
- Investigated several avenues for proof

- Unable to prove the Werner Basis Conjecture
- Investigated several avenues for proof
- Latest idea on the expansion of Werner Diagrams in the permutation basis has the best chance of success

- Unable to prove the Werner Basis Conjecture
- Investigated several avenues for proof
- Latest idea on the expansion of Werner Diagrams in the permutation basis has the best chance of success
- Hinges on the understanding of the triangle of coefficients

- Unable to prove the Werner Basis Conjecture
- Investigated several avenues for proof
- Latest idea on the expansion of Werner Diagrams in the permutation basis has the best chance of success
- Hinges on the understanding of the triangle of coefficients
- \bullet Understand where they come from and obtain a formula -> show the coefficient for the top permutation matrix will never be zero; our proof follows from there.

Thank you for your attention.

Acknowledgments. This work was supported by a Lebanon Valley College Arnold faculty-student research grant. Thank you to my faculty mentor, Dr. David Lyons.

Lebanon Valley College Mathematical Physics Research Group http://quantum.lvc.edu/mathphys

 David W. Lyons, Abigail M. Skelton, and Scott N. Walck. Werner state structure and entanglement classification. *Advances in Mathematical Physics*, 2012:463610, 2012. arXiv:1109.6063v2 [quant-ph].

[2] Markus Grassl, Martin Rötteler, and Thomas Beth. Computing local invariants of quantum-bit systems. *Phys. Rev. A*, 58:1833–1839, Sep 1998. arXiv:quant-ph/9712040.

 [3] Michael A. Nielsen and Isaac L. Chuang. *Quantum Computation and Quantum Information*. Cambridge University Press, 2000.