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Background of Quantum Information Science

• Importance in the 1990s

• Used for currently impossible computations

• Focus on the class of Werner states

• Defined by their invariance under the same unitary operation on every
qubit position

• Some noise descriptions are based on unitary operators

• Useful in carrying information in noisy quantum channels (Lyons 2012)

Cammarota (LVC) Investigation of the Werner Basis Conjecture February 25, 2016 2 / 22



Background of Quantum Information Science

• Importance in the 1990s

• Used for currently impossible computations

• Focus on the class of Werner states

• Defined by their invariance under the same unitary operation on every
qubit position

• Some noise descriptions are based on unitary operators

• Useful in carrying information in noisy quantum channels (Lyons 2012)

Cammarota (LVC) Investigation of the Werner Basis Conjecture February 25, 2016 2 / 22



Background of Quantum Information Science

• Importance in the 1990s

• Used for currently impossible computations

• Focus on the class of Werner states

• Defined by their invariance under the same unitary operation on every
qubit position

• Some noise descriptions are based on unitary operators

• Useful in carrying information in noisy quantum channels (Lyons 2012)

Cammarota (LVC) Investigation of the Werner Basis Conjecture February 25, 2016 2 / 22



Background of Quantum Information Science

• Importance in the 1990s

• Used for currently impossible computations

• Focus on the class of Werner states

• Defined by their invariance under the same unitary operation on every
qubit position

• Some noise descriptions are based on unitary operators

• Useful in carrying information in noisy quantum channels (Lyons 2012)

Cammarota (LVC) Investigation of the Werner Basis Conjecture February 25, 2016 2 / 22



Background of Quantum Information Science

• Importance in the 1990s

• Used for currently impossible computations

• Focus on the class of Werner states

• Defined by their invariance under the same unitary operation on every
qubit position

• Some noise descriptions are based on unitary operators

• Useful in carrying information in noisy quantum channels (Lyons 2012)

Cammarota (LVC) Investigation of the Werner Basis Conjecture February 25, 2016 2 / 22



Background of Quantum Information Science

• Importance in the 1990s

• Used for currently impossible computations

• Focus on the class of Werner states

• Defined by their invariance under the same unitary operation on every
qubit position

• Some noise descriptions are based on unitary operators

• Useful in carrying information in noisy quantum channels (Lyons 2012)

Cammarota (LVC) Investigation of the Werner Basis Conjecture February 25, 2016 2 / 22



Basics

• Information stored in quantum bits (qubits), and n-qubit quantum state
lies in a complex vector space

• formed by taking linear combinations (or superpositions) of n-bit strings
• 3-qubit state vector: 1

10(|000〉 − 5i |010〉+ 8 |101〉+
√

10 |111〉)
• Dirac’s ket notation (|ψ〉)
• Complex conjugate-transposed vectors represented by bras (〈ψ| = (|ψ〉)†)
• Conventionally normalized, which means 〈ψ|ψ〉must = 1

• 1-qubit system: the basis vectors are |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
• Combined to produce higher dimensional qubit spaces using a tensor
product (⊗)
• Denotes the Kronecker product of the two matrices: done by multiplying
each entry in the first matrix by the second matrix, and forming a matrix
of those values
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Kronecker Product

• To form a tensor: consider a basis vector for the 2-qubit space: |0〉 ⊗ |1〉

• So, as above:|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
, so

|0〉 ⊗ |1〉 =

1 ·
[

0
1

]
0 ·
[

0
1

]
 =


0
1
0
0
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Forming Werner States

• Diagram method to represent Werner States in n-qubits (Lyons 2012)

• Begin with a non-crossing polygon diagram with a total of n points
along the circle
• In 5-qubit possible state:

1

2

3
4

5
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• For each polygon in the diagram, form a sum of the cyclic permutations
of the bit strings of the size of the polygon, with a normalization factor
and roots of unity coefficients

• Turn this string into a density matrix
• Density matrices for each size bit string are summed, then normalize the
result
• Final Werner state formed by tensoring the density matrices in the
positions specified by the points on the diagram

C[1,4,5](001) = 1√
3

(|001〉+ e
2πi
3 |010〉+ e

4πi
3 |100〉)

C[2,3](01) = 1√
2

(|01〉 − |10〉)

C3 = 1
2(C[1,4,5](001)C[1,4,5](001)† + C[1,4,5](011)C[1,4,5](011)†)

C2 = C[2,3](01)C[2,3](01)†

ρD = (C3)[1,4,5] ⊗ (C2)[2,3]

• Final matrix is 2n by 2n
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Werner Basis Conjecture [1]

The states ρD (as D varies over all non-crossing polygon diagrams) form a
basis for the space of Werner states (in the larger space of real linear
combinations of Pauli tensors).

• Size of this set matches the dimension of the Werner space

• Subject of our work was to prove this set is linearly independent
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Matrices and Independence

• Assistance of the GAP system, a free and open software package

• Standard test for independence
• Supposes

∑
D cDρD = 0

• Only practical for 2 qubits, as the higher dimensions become
computationally infeasible
• 2 qubits: two possible Werner States:


1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

 and


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0
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Independence

• Begin with set of matrices

• Independent if no element can be written as a combination of others in
set
• Independent Example (Pauli Matrices):[

0 1
1 0

]
,

[
0 −i
i 0

]
, and

[
1 0
0 −1

]
• Dependent Example:[

0 1
1 0

]
,

[
0 −i
i 0

]
, and

[
0 2
0 0

]
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Unfruitful Attempts

• Summation over diagonals: Condensed equation set, still complicated
solution

• Hilbert-Schmidt Inner Product: Took trA†B for all A,B in the set of
Werner Diagrams for a given size and formed a matrix of the traces
• Graham-Schmidt Orhtonormalization: searched for a new non-zero value
in some entry in each successive matrix
• Difficulties: Worked for low n, however patterns were not clear and
unable to generalize solutions to higher dimensions
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Permutation Matrices

• Another form of matrix can be constructed from non-crossing polygon
diagrams: a special kind of permutation matrix (denoted by V )

• Formed by creating a permutation matrix for each polygon, and
tensoring these together to form the matrix for the diagram
• Using the same example:

1

2

3
4

5
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Forming Permutation Matrices

• Permutation matrices are variations of the identity matrix

• From a diagram state, the permutations are read around each shape.
• The first permutation is (1,4,5), so the qubit in position 1 goes to
position 5, 5 goes to 4, and 4 goes to 1.
• Beginning with the state |01010〉, the first permutation does:

|01010〉 → |11000〉

• The second permutation, (2,3), just switches the two, so

|11000〉 → |10100〉

. • The permutations can leave the states identical, for example:

|10011〉 → |10011〉

• Process applied to all the basis vectors for the system
• Vectors are made into columns for the permutation matrix, in original
order
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Functionality of Permutation Matrices

• The permutation matrices form a basis over the space of the diagram
states (Grassl 1998)

• Use the permutation matrices and relation to the Werner Diagrams to
prove independence
• Any Werner diagram written as a linear combination of permutation
matrices
• Can easily be shown the top Werner Diagram can be written in the form

ρn-gon ∝
n−1∑
k=0

(e
2πi
n )kV k

n-gon (1)
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• Exploring the expansion of Werner Diagrams and the powers of the top
permutation matrices in the permutation basis

• Hope: be able to express the powers of the top permutation matrix as a
non-zero coefficient with the top matrix and some combination of lower
diagrams
• Use induction to prove the top permutation matrix was also a
combination of Werner Diagrams
• These combinations could then be used in (1) to show independence of
the Werner diagrams

Method based on Permutation Matrices

The set of Werner Diagrams is linearly independent if, when ρn-gon is
expanded in the permutation basis, the coefficient of Vn-gon is nonzero.
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• Example of code for expanding a matrix in a basis
BasisCoef:=function(list,matrix)

A:=list; D:=[];

for i in [1..Length(A)] do;

Add(D,flatten(A[i])); od;

B:=matrix; C:=SolutionMat(D,flatten(B)); return C; end;

• Example of the expansion of powers of the V4-gon[
0 0 0 0 0 0 0 0 0 0 0 0 0 1

]
V 1

4-gon[
1 −1 −1 0 −1 0 −1 1 1 1 1 1 1 −2

]
V 2

4-gon[
−2 1 1 1 1 1 1 0 0 −1 −1 −1 −1 1

]
V 3

4-gon
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N-gon coefficients

• Powers of the top permutation matrices in the permutation basis:
interesting pattern developed

• Similar to an alternating Pascal’s triangle
• Fourth row (n = 6) the values began to differ
• Sixth row (n = 8), the sequence did not match any in the OEIS
• Symmetry and properties of the roots of unity: can be shown the sum
across any even row will always be real and across any odd row the sum
will always be imaginary
• Unable to show the sum will not be zero
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Triangle of Coefficients of Vn-gon to powers from 1 to n − 1

n = 2 1
n = 3 1 -1
n = 4 1 -2 1
n = 5 1 -3 3 -1
n = 6 1 -4 8 -4 1
n = 7 1 -5 17 -17 5 -1
n = 8 1 -6 33 -56 33 -6 1

• Conjecture the expansion of the top permutation matrix squared is

V 2
n-gon = (2− n) · Vn-gon + others

• Induction on higher powers of Vn-gon to show the coefficient is nonzero
• Observed the coefficients of the identity matrix in these expansions are
the values from the triangle (backwards)
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Inverse Matrices

• Experimented with the expansion of the inverse of the top permutation
matrices

• Inverse of the k power of the Vn-gon is the n − k power
• Hoped understanding the power and its inverse’s relationship would help
us understand where the coefficients come from
• Power and the inverse have the same top matrix coefficient, sometimes
with the opposite sign
• Observations led to this proven conjecture on the form of the inverse:

Expansion of V−1n-gon

V−1n-gon = Id +
n∑

k=0

(−1)k
∑
|p|=k

Vp∪dots
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Results and Further Work

• Unable to prove the Werner Basis Conjecture

• Investigated several avenues for proof
• Latest idea on the expansion of Werner Diagrams in the permutation
basis has the best chance of success
• Hinges on the understanding of the triangle of coefficients
• Understand where they come from and obtain a formula − > show the
coefficient for the top permutation matrix will never be zero; our proof
follows from there.
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Thank you for your attention.
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